Search results for "Velocity estimation"
showing 6 items of 6 documents
Velocity estimation in wideband mobile stations equipped with multiple antennas
2009
©2009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. Article also available from publisher: http://dx.doi.org/10.1109/VETECS.2009.5073907 A new method is proposed for estimating the velocity of wideband mobile stations (MSs) equipped with multiple antennas. The MS speed is determined using the well-known relationship between the direction-of-arrivals (DOAs) and the Doppler frequency shifts experienced by the mult…
A New Method of Velocity Estimation Based on Variable Temporal Basis Using Incremental Encoder
1997
Abstract This paper deals with analysis and synthesis of algorithms for digital conditioning of signals generated by incremental encoders to estimate velocity of rotating devices for control purposes. Main objectives are to obtain high accuracy at low and high velocity and low tracking delays during accelerations. A digital conditioning method is described, Which uses a polynomial of order n whose coefficients are updated so as to fit the n+1 most recent velocity data acquired on a variable temporal basis. Digital sinlulations and experimental findings are shown with the ainl to validate the proposed estimation method and compare it with other methods.
Estimation of the Time-Variant Velocity of a Single Walking Person in Two-Dimensional Non-Stationary Indoor Environments Using Radio-Frequency Techni…
2020
Accurate estimation of the time-variant (TV) velocity of moving persons/objects in indoor spaces is of crucial importance for numerous wireless indoor applications. This article introduces a novel iterative procedure to estimate the TV velocity, i.e., TV speed and TV angle-of-motion (AOM), of a single moving person in 2D indoor environments by using radio-frequency (RF) techniques. The indoor area is equipped with a distributed 2 × 2 multiple-input multiple-output (MIMO) system. The proposed method is divided into two parts. In the first part, we estimate the path gains and the instantaneous Doppler frequencies by fitting the exact spectrograms of the complex channel gains of a 2D no…
A Velocity Estimation Technique for a Monocular Camera Using mmWave FMCW Radars
2021
Perception in terms of object detection, classification, and dynamic estimation (position and velocity) are fundamental functionalities that autonomous agents (unmanned ground vehicles, unmanned aerial vehicles, or robots) have to navigate safely and autonomously. To date, various sensors have been used individually or in combination to achieve this goal. In this paper, we present a novel method for leveraging millimeter wave radar’s (mmW radar’s) ability to accurately measure position and velocity in order to improve and optimize velocity estimation using a monocular camera (using optical flow) and machine learning techniques. The proposed method eliminates ambiguity in optical flow veloci…
Human Activity Signatures Captured under Different Directions Using SISO and MIMO Radar Systems
2022
In this paper, we highlight and resolve the shortcomings of single-input single-output (SISO) millimeter wave (mm-Wave) radar systems for human activity recognition (HAR). A 2×2 distributed multiple-input multiple-output (MIMO) radar framework is presented to capture human activity signatures under realistic conditions in indoor environments. We propose to distribute the two pairs of collocated transmitter–receiver antennas in order to illuminate the indoor environment from different perspectives. For the proposed MIMO system, we measure the time-variant (TV) radial velocity distribution and TV mean radial velocity to observe the signatures of human activities. We deploy the Anc…
Localization in Structured Environments with UWB Devices without Acceleration Measurements, and Velocity Estimation Using a Kalman–Bucy Filter
2022
In this work, a novel scheme for velocity and position estimation in a UWB range-based localization system is proposed. The suggested estimation strategy allows to overcome two main problems typically encountered in the localization systems. The first one is that it can be suitable for use in environments where the GPS signal is not present or where it might fail. The second one is that no accelerometer measurements are needed for the localization task. Moreover, to deal with the velocity estimation problem, a suitable Kalman–Bucy filter is designed and it is compared, experimentally, with a particle filter by showing the features of the two algorithms in order to be used in a localization …